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ABSTRACT Molecular graph theory was used to design a unique and diverse,
high-efficiency fragment screening collection. A data set retrieved from the
annotated database AurSCOPE GPS was used as the reference set, and the GDB-
13 database, a virtual library of enumerated organic molecules, was used as a
source for the fragment selection. The data graph collection of Discngine as
implemented in PipelinePilot was applied to perform the graph pharmacophore
similarity matching between the reference and the GDB-13 data sets, leading to the
ultimate fragment screening library. The relevance of this unique fragment
collectionwas demonstrated bymeans of a virtual screening exercise using human
trypsin as a test case. Several novel entities with high similarity to known trypsin
inhibitors were identified in the in silico exercise. The application of this unique,
high fragment efficiency collection to other protein targets in the framework of
fragment-based drug discovery is warranted.
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High-throughput screening (HTS) has long been the
dominant hit finding strategy in the pharmaceutical
industry. Yet, throughout the past decade, significant

shortcomings associated with these campaigns have be-
come evident. For example, high false positive rates due to
compound aggregation,1,2 considerable false negative
rates due to the suboptimal physicochemical properties
of compound stocks, low hit rates due to the gratuitous
complexity of screening libraries,3 and negative campaign
outcomes due to the poor intrinsic chemical diversity of
compound stocks4 have impaired the discovery of novel
chemical matter for therapeutically attractive targets. The
undermined productivity of HTS together with the rising
success of structure-based drug design paved the way for
the more provocative fragment-based drug discovery
(FBDD) paradigm.5 FBDD is nowadays an established
technique for hit finding; in essence, it bases its strength
on the competent binding of small chemical entities to their
targets.6 One apparent advantage of FBDD libraries is that
their relatively small size (typically 500-5000 fragments) can
thoroughly sample drug space in a proficient manner.7 Yet, this
remarkable advantage is accompanied by a potential liability:
Oversimplifying the screening collection to a set of commercial
entities regularly used by the entire FBDD community could
give rise to comparable hit fragments. In such a case, the
ensuing hit evolution toward patentable leads could prove
challenging. With the purpose of avoiding this scenario, we
advocate committing substantial computational, analytical, and
synthetic resources toward the design and implementation of
an exclusive FBDD screening armory. Specifically, we propose
that the scaffold complexity of the rule-of-three compliant8

screening library be significantly elevated so as to circumvent
previously explored chemical space.

In this study, a unique and diverse, high-efficiency frag-
ment collectionwas designed using the GDB-13 database9 as
a source of fragments. GDB-13 is a virtual collection of
enumerated organic molecules of up to 13 atoms. This
collection includes approximately 970 million C/N/O/S/Cl-
containing compounds that conform to simple chemical
stability and synthetic feasibility rules. To our knowledge,
GDB-13 is the largest small molecule database to date that is
publicly available. Recent hit finding efforts using the related
GDB-11 database proved successful in discovering novel
NMDA glycine site inhibitors.10

The GDB-13 database was preprocessed so as to retain
only fragmentlike scaffolds suitable for FBDD screening. The
applied chemical criteria are as follows: (1) rule-of-three
compliance, (2) nontoxicity/reactivity compliance,11-13 and
(3) noncommercial availability14 (section 1 in the Support-
ing Information). In parallel, AurSCOPE GPS,15 an extensive
knowledge database containing quantitative biological ac-
tivity data for the majority of therapeutic drug targets, was
mined to assemble the reference set. This set was composed
of 2329 compounds obeying the rule-of-three and having a
high affinity to their biological targets, which include ion
channels, GPCRs, proteases, and kinases (section 2 in the
Supporting Information). The FBDD profile of this reference
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set was ascertained by analysis of several physicochemical
descriptors (Figure 1 in the Supporting Information); this
collection thus constitutes a suitable reference data set with
which to execute the molecular graph pharmacophore
matching algorithm against GDB-13.

Subsequently, molecular graph theory16 was used for the
graphpharmacophore generation and subsequentmatching
of the GDB-13 database against the reference data set. A
molecular graph pharmacophore is a simple way of repre-
senting an entity by a set of nodes and their spatial relation-
ship and was here chosen for its successful performance in
lead hopping practices.17,18 The data graph collection of
Discngine19 as implemented in PipelinePilot20 was used to
encode the reference and GDB-13 data sets into graph
pharmacophores (Figure 1). The pharmacophore graph
matching algorithm was thereafter used to select those
GDB-13 entities scoring 0.9 or higher toward the reference
set, resulting in a total of 53600nonredundant fragment hits.

Next, a pareto multiobjective optimization21-23 was used
to reduce the above-mentioned hit set to the smallest frag-
ment collection that describes fragment diversity in drug
space competently. The following objectives were taken into
consideration: (1) high structural diversity (fragment level),
(2) high structural diversity (scaffold level), (3) high scaffold
complexity,24 (4) high chemical tractability, and (5) low
scaffold redundancy (section 3 in the Supporting In-
formation). This resulted in the ultimate 1357 fragment
set, here referred to as the high fragment efficiency (HFE)
set (available upon request). Physicochemical descriptor
distribution analysis of the HFE set confirmed the suitability
of this diverse fragment collection for FBDD screening pur-
poses (Figure 2 in the Supporting Information), which paral-
lels the distribution of commercial fragment collections.7

A plausible explanation for the modest variation in the

descriptor distribution (e.g., molecular weight) stems from
this unique library being assembled on basis of the 1-13
heavy atom premise.9

Next, the intrinsic chemical diversities of the HFE set, a
commercial fragment collection (iNovacia AB25), and a
random fragment selection (here used as a control) were
examined. Such analysis established a higher diversity with-
in theHFE set than that of iNovacia's or the random fragment
selection (Figure 3 in the Supporting Information). Moreover,
the chemical similarity between the HFE/iNovacia fragment
collections was assessed and concluded to be low (Figure 4 in
the Supporting Information). In addition, a substructure search
in the Prous Science Integrity database26 ascertained that the
HFE library finds zero occurrences whereas 25% of iNovacia
AB's fragment collection is often recovered in compounds in
R&Dstages.26 In addition, a chemical tractabilityanalysis of the
HFE, iNovacia, and control fragment collections showed a
higher number of chemical handles for fragments in the HFE
data set, thus making this screening set a more tractable
starting point for subsequent chemical elaboration (Figure 5
in the Supporting Information).

Next, the applicability of the HFE fragment collection was
interrogated by means of a virtual screening exercise using
the serine protease trypsin as a test case. For comparison
purposes, the iNovacia and control fragment sets were
studied in parallel. The binding of inhibitors to trypsin is
characterized by a primary specificity pocket (S1) and addi-
tional secondary subsites (Figure 2). It is well-documented
that the presence of Asp189, at the bottomof S1, is themajor
enthalpic determinant for the narrow affinity and specificity
of trypsin for positively charged substrates/inhibitors.27,28

The crystal structure of human trypsin in complex with a
small inhibitor obtained from the publicly available ZINC
database29 was used in this study. The HFE, iNovacia, and
control fragment sets were docked into human trypsin so as
to sample possible interaction poses using GOLD.30 Molec-
ular interaction fingerprints31-33 were thereafter used as a
postprocessing tool to discard nonrelevant docking poses
(section 6 in the Supporting Information). Specifically, the
following constraints were imposed for each screening frag-
ment: (1) polar interaction with Asp189, (2) polar/hydro-
phobic/aromatic interaction with Ser195/His57, and (3)
minimal intermolecular clashes.34 After visual inspection,

Figure 1. Three types of reduction schemes are possible within
Discngine: (A) pharmacophore-based, (B) topology-based, and (C)
pharmacophore and topology-based. The latter was used in this
study. Nodes recognized for pharmacophore-based graphs are
as follows: acceptor (hydrogen bond acceptor), donor (hydrogen
bond donor), negative charge, positive charge, aromaticity, lipo-
philicity, and ionizable. Nodes for topology-based graphs include
aromatic or planar ring, nonplanar ring, linker, and terminal
group.

Figure 2. Active site of human trypsin with a crystallized inhi-
bitor (left). The relevant S1 pocket formed by Asp189 (D189)
and Ser190 (S190) and the secondary subsite formed by the
catalytic Ser195 (S195), His57 (H57), and Asp102 triad are high-
lighted. The chemical structure of the small inhibitor is also shown
(right).
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an average of 80 nonredundant hit fragments was accepted
from the HFE, iNovacia, and control fragment collections.

To quantify the relevance of the aforementioned fragment
hits, a chemical similarity analysis35 was performed to deter-
mine the correspondence between several trypsin inhibitors
and HFE/iNovacia/control hit sets. The trypsin inhibitor set was
obtained from the ZINC database and further enriched with
those contained in the Prous Science Integrity database. For
chemical comparison simplicity, each inhibitor was thereafter
reduced to the simplest scaffold that interacts with the binding
site residues majorly involved in recognition (Figure 2).

The chemical similarity between theHFE/iNovacia/control
hit sets and trypsin's inhibitor set was analyzed (Figure 6 in
the Supporting Information). It can be readily observed that
the similarity of the HFE hit set to the trypsin reference
collection exceeds those of iNovacia/control hit sets. More-
over, it appears that the intrinsic diversity of HFE was
somewhat higher than that of the iNovacia/control sets.
Analysis of the chemical tractability of the hit sets showed
that the HFE hit set presents a higher number of chemical
handles, which would make fragment elaboration by man-
ual/parallel chemistry toward leads more amenable. All in
all, these data suggest that the HFE set represents a more

diverse, higher efficiency FBDD collection with high chemi-
cal tractability potential.

RepresentativeHFE hit fragments and their docking poses
within trypsin's binding pocket are shown in Figure 3. It can
be observed that the fragments are well-anchored in the
binding site, making strong and specific interactions with
crucial residues, thus suggesting high enthalpic contribution
to the binding event. Structural similarity can be observed
between the distinctive benzamidinemotif and several of its
amine analogues.27,36,37 Specifically, the calculated chemi-
cal similarity for these six fragments ranges between 0.64
and 0.77. Moreover, all fragments are readily derivatizable
through one chemical handle that is not accountable for their
binding to trypsin.

A substructure search in the Prous Science Integrity
database with the iNovacia AB and HFE hit sets ascertained
that our HFE hits have zero occurrences within databases
containing entities in R&D stages, whereas iNovacia AB's hit
set was often recovered in known compounds. This implies
that the structural optimization of these hit fragments into an
IP-free drug space may be more burdensome and empha-
sizes our thesis of investing resources in the design and
implementation of a unique screening fragment library that

Figure 3. Three-dimensional representation of a small selection of the HFE hits. Intermolecular interactions between each fragment and
the S1 pocket/catalytic triad of trypsin and the respective chemical structures are shown.
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capitalizes on more amenable hit-to-lead and lead optimiza-
tion efforts.

In summary, unprecedented efforts to design a diverse,
high-efficiency, unique fragment collection based on molec-
ular graph theory are here described. This fragment collec-
tion navigates a chemical space not previously populated by
typical commercial FBDD libraries. Chemical matter was
carefully selected by applying classical Ro3 filters and che-
mical tractability, diversity, scaffold complexity, and non-
commercial criteria. The relevance of this unique fragment
collectionwas demonstrated bymeans of a virtual screening
exercise using human trypsin as the test case. Some novel
and highly tractable fragments with high chemical similarity
to trypsin inhibition motifs were identified in the virtual
screening exercise, opening a door to the discovery of novel
trypsin inhibitors. The applicability of this diverse, high-
efficacy fragment collection to other protein targets in the
frame of FBDD is inferred.

SUPPORTING INFORMATION AVAILABLE Computational
procedures as well as outcome of the analyses discussed in the text.
This material is available free of charge via the Internet at http://
pubs.acs.org.
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